Integration and Validation of the Genome-Scale Metabolic Models of Pichia pastoris: A Comprehensive Update of Protein Glycosylation Pathways, Lipid and Energy Metabolism
نویسندگان
چکیده
MOTIVATION Genome-scale metabolic models (GEMs) are tools that allow predicting a phenotype from a genotype under certain environmental conditions. GEMs have been developed in the last ten years for a broad range of organisms, and are used for multiple purposes such as discovering new properties of metabolic networks, predicting new targets for metabolic engineering, as well as optimizing the cultivation conditions for biochemicals or recombinant protein production. Pichia pastoris is one of the most widely used organisms for heterologous protein expression. There are different GEMs for this methylotrophic yeast of which the most relevant and complete in the published literature are iPP668, PpaMBEL1254 and iLC915. However, these three models differ regarding certain pathways, terminology for metabolites and reactions and annotations. Moreover, GEMs for some species are typically built based on the reconstructed models of related model organisms. In these cases, some organism-specific pathways could be missing or misrepresented. RESULTS In order to provide an updated and more comprehensive GEM for P. pastoris, we have reconstructed and validated a consensus model integrating and merging all three existing models. In this step a comprehensive review and integration of the metabolic pathways included in each one of these three versions was performed. In addition, the resulting iMT1026 model includes a new description of some metabolic processes. Particularly new information described in recently published literature is included, mainly related to fatty acid and sphingolipid metabolism, glycosylation and cell energetics. Finally the reconstructed model was tested and validated, by comparing the results of the simulations with available empirical physiological datasets results obtained from a wide range of experimental conditions, such as different carbon sources, distinct oxygen availability conditions, as well as producing of two different recombinant proteins. In these simulations, the iMT1026 model has shown a better performance than the previous existing models.
منابع مشابه
Comprehensive reconstruction and evaluation of Pichia pastoris genome-scale metabolic model that accounts for 1243 ORFs
BACKGROUND Pichia pastoris is one of the most important cell factories for production of industrial enzymes and heterogenous proteins. The genome-scale metabolic model of high quality is crucial for comprehensive understanding of the P. pastoris metabolism. METHODS In this paper, we upgraded P. pastoris genome-scale metabolic model based on the combination of latest genome annotations and lit...
متن کاملExpression of Gp63 Gene from NIH Strain of Leishmania major in Pichia pastoris
Leishmaniasis is a major infectious disease of considerable public health in more than 86 countries around the world. Several approaches toward vaccine development against this disease have been taken. Glycoprotein (gp63) is conserved among diverse species of Leishmania and has induced immunological responses in murine models. Therefore, this glycoprotein has been considered as a second generat...
متن کاملP-205: Production of Recombinant Fish FSH Hormone in Pichia Pastoris
Background: Follicle-stimulating hormone (FSH) belongs to the family of glycoprotein hormones that composing alpha and beta subunits with non-covalently bonds. This hormone involve in regulation of the reproductive processes such as gamete generation and follicular growth. Injection of the hormone in most of fish species increases 17 beta-estradiol production by ovarian tissue and also stimulat...
متن کاملP-191: Cloning and Expression of Recombinant Ovine FSH Hormone in Pichia Pastoris
Background: Follicle stimulating hormone is a heterodimeric protein composed of two subunits, α and ß, which are linked noncovalently. The hypophysial gonadotropin FSH plays an important role in the regulation of oocyte maturation, and a key component for growth of ovulator follicles in ewes. Materials and Methods: This study seeks to clone and express the ovine follicle stimulating hormone sub...
متن کاملInvestigation on metabolism of cisplatin resistant ovarian cancer using a genome scale metabolic model and microarray data
Objective(s): Many cancer cells show significant resistance to drugs that kill drug sensitive cancer cells and non-tumor cells and such resistance might be a consequence of the difference in metabolism. Therefore, studying the metabolism of drug resistant cancer cells and comparison with drug sensitive and normal cell lines is the objective of this research. Material and Methods:Metabolism of c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016